Determination of Supercooled Liquid Water Content by Measuring Rime Rate

Author(s):  
David C. Rogers ◽  
Darrel Baumgardner ◽  
Gabor Vali
Author(s):  
Tim Carlsen ◽  
Morten Køltzow ◽  
Trude Storelvmo

Abstract In-cloud icing is a major hazard for aviation traffic and forecasting of these events is an important task for weather agencies worldwide. A common tool utilised by aviation forecasters is an icing intensity index based on supercooled liquid water from numerical weather prediction models. We seek to validate the modified microphysics scheme, ICE-T, in the HARMONIE-AROME numerical weather prediction model with respect to aircraft icing. Icing intensities and supercooled liquid water derived from two 3-month winter season simulations with the original microphysics code, CTRL, and ICE-T are compared with pilot reports of icing and satellite retrieved values of liquid and ice water content from CloudSat-CALIPSO and liquid water path from AMSR-2. The results show increased supercooled liquid water and higher icing indices in ICE-T. Several different thresholds and sizes of neighbourhood areas for icing forecasts were tested out, and ICE-T captures more of the reported icing events for all thresholds and nearly all neighbourhood areas. With a higher frequency of forecasted icing, a higher false-alarm ratio cannot be ruled out, but is not possible to quantify due to the lack of no-icing observations. The increased liquid water content in ICE-T shows a better match with the retrieved satellite observations, yet the values are still greatly underestimated at lower levels. Future studies should investigate this issue further, as liquid water content also has implications for downstream processes such as the cloud radiative effect, latent heat release, and precipitation.


1990 ◽  
Vol 28 (5) ◽  
pp. 817-822 ◽  
Author(s):  
J.C. Alishouse ◽  
J.B. Snider ◽  
E.R. Westwater ◽  
C.T. Swift ◽  
C.S. Ruf ◽  
...  

2009 ◽  
Vol 2 (3) ◽  
pp. 1293-1320
Author(s):  
A. Schwarzenboeck ◽  
G. Mioche ◽  
A. Armetta ◽  
A. Herber ◽  
J.-F. Gayet

Abstract. During the airborne research mission ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation) performed over the island of Svalbard in the Arctic a constant-temperature hot-wire Nevzorov Probe designed for aircraft measurements, has been used onboard the aircraft POLAR 2. The Nevzorov probe measured liquid water (LWC) and total condensed water content (TWC) in supercooled liquid and partly mixed phase clouds, respectively. As for other hotwire probes the calculation of LWC and/or TWC (and thus the ice water content IWC) has to take into account the collection efficiencies of the two separate sensors for LWC and TWC which both react differently with respect to cloud phase and what is even more difficult to quantify with respect to the size of ice and liquid cloud particles. The study demonstrates that during pure liquid cloud sequences the ASTAR data set of the Nevzorov probe allowed to improve the quantification of the collection efficiency, particularly of the LWC probe part with respect to water. The improved quantification of liquid water content should lead to improved retrievals of IWC content. Simultaneous retrievals of LWC and IWC are correlated with the asymmetry factor derived from the Polar Nephelometer instrument.


Sign in / Sign up

Export Citation Format

Share Document